trọng điểm là gì, công thức tính trọng điểm của tam giác như thế nào? Mời các độc giả bài viết dưới đây để hiểu thêm về trọng tâm tam giác, tri thức rất quan trọng và phổ thông trong những niên học phổ thông nhé.
trọng điểm là gì?
Một tam giác có 3 đường trung tuyến, đoạn thẳng nối từ đỉnh của tam giác đến trung điểm của cạnh đối diện.
trọng điểm của tam giác là giao điểm của ba đường trung tuyến.
tính chất của trọng tâm trong tam giác
Khoảng cách từ trọng điểm của tam giác đến đỉnh bằng 2/3 độ dài đường trung tuyến ứng với đỉnh đó.
Tam giác ABC, với các đường trung tuyến AM, BN, CP và trọng tâm G, ta có:
|
trung tâm tam giác vuông
trọng tâm của tam giác vuông cũng được xác định giống như trọng tâm của tam giác thường.
Tam giác MNP vuông tại M. 3 đường trung tuyến MD, NE, PF giao nhau tại trọng điểm O. Ta có MD là trung tuyến của góc vuông PMN nên MD = 1/2 PN = DP = DN. |
trung tâm tam giác cân
Tam giác ABC cân tại A, có G là trung tâm. Vì tam giác ABC cân tại A nên AG vừa là đường trung tuyến, đường cao và là đường phân giác, từ đó ta suy ra được hệ quả của trọng điểm tam giác cân ABC như sau:
|
trọng điểm của tam giác vuông cân
Có tam giác ABC vuông cân tại A và I là trọng điểm. AM là đường trung trực, đường trung tuyến và đường cao của tam giác này nên AM vuông góc với BC. Mặt khác, vì tam giác ABC vuông cân tại A nên: AB = AC. => BP = CN và BN = AN = CP = AP. |
trung tâm tam giác đều
Tam giác ABC đều, G là giao điểm ba đường trung tuyến, đường cao, đường phân giác. do vậy theo tính chất của tam giác đều ta có G vừa là trung tâm, trực tâm, tâm đường tròn ngoại tiếp và nội tiếp của tam giác ABC. |
Cách tìm trọng điểm tam giác
Cách 1: Giao điểm 3 đường trung tuyến
Xác định trọng điểm tam giác bằng cách lấy giao điểm của ba đường trung tuyến.
Bước 1: Vẽ tam giác ABC, tuần tự xác định trung điểm của các cạnh AB, BC, CA. Bước 2: Nối lần lượt các đỉnh đến trung điểm của cạnh đối diện. Nối A với G, B với F, C với E. Bước 3: Giao điểm I của ba đường trung tuyến là AG, BF, CE là trung tâm của tam giác ABC. |
Cách 2: Tỉ lệ trên đường trung tuyến
Xác định trọng điểm tam giác dựa trên tỉ lệ đường trung tuyến.
Bước 1: Vẽ tam giác ABC, xác định trung điểm M của cạnh BC. Bước 2: Nối đỉnh A với trung điểm M, sau đó lấy điểm S sao cho AS = 2/3 AM. Theo tính chất trung tâm tam giác thì điểm S chính là trung tâm tam giác ABC. |
Bài tập về trung tâm tam giác
Bài 1 : Tam giác ABC có trung tuyến AD = 9cm và trung tâm I. Tính độ dài đoạn AI?
Giải:
Ta có I là trọng tâm của tam giác ABC và AD là đường trung tuyến nên AI = (2/3) AD (theo tính chất ba đường trung tuyến của tam giác). Do đó: AG = (2/3).9 = 6 (cm). Vậy đọan AI có độ dài 6 cm. |
Bài 2:
Cho I là trung tâm của tam giác đều MNP. Chứng minh rằng: IM = IN = IP.
Giải:
Gọi trung điểm MN, MP, PN tuần tự là R, O, S. Khi đó MS, PR, NO đồng quy tại trọng điểm I. Ta có ∆MNP đều, suy ra: MS = PR = NO (1). Vì I là trọng tâm của ∆ABC nên theo tính chất đường trung tuyến: MI = 2/3 MS, PI = 2/3 PR, NI = 2/3 NO (2). Từ (1) , (2) ⇒ GA = GB = GC. |
“Một nhúm muối nếu bỏ vào 1 cốc nước, cốc nước ấy có thể ko còn uống được, nhưng nếu được bỏ vào một hồ nước thì nguồn nước ấy vẫn trong ngọt. Vì thế, vấn đề ko chỉ đơn thuần là có hay ko có một ai đó bỏ 1 nhúm muối vào cuộc đời bạn, mà còn là ở bạn: trái tim bạn là một hồ nước lớn hay chỉ là một cốc nước nhỏ bé?” alt="" width="284" height="178" src="https://st.quantrimang.com/photos/image/2021/08/05/trong-tam-cua-tam-giac-10.jpg"> |
Ngoài trung tâm, tam giác còn có các tri thức khác như diện tích tam giác , chu vi tam giác , đường cao tam giác , mời các bạn tham khảo.
Không có nhận xét nào: